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Glass like magnetic alternating field susceptibility behavior
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Abstract. Four ferrofluids, distinct in size distribution and aggregate structure, were investigated. The
relaxation time τm(T ), related to the temperature of susceptibility maximum, was fitted to a Vogel-Fulcher
law. A mean ordering temperature, T0, was calculated using magnetic particle parameters derived from
the structure. It is assumed that at T0 the particle moments of particle clusters correlate, leading to a spin
glass-like transition. Hence, then dynamic slows down considerably, as indicated by a strong broadening of
relaxation-time distribution. T0 roughly agrees with the energy of competing interaction between particle
moments, as calculated from the structure of particle aggregates. Differences between particle arrangements
clearly influence the dispersion and absorption, particularly within the cluster phase.

PACS. 75.30.-m Intrinsic properties of magnetically ordered materials – 75.50.-y Studies of specific
magnetic materials – 61.46.+w Clusters, nanoparticles, and nanocrystalline materials

1 Introduction

Ferrofluids are ensembles of disordered magnetic dipole
moments. Owing to the anisotropy, the interactions be-
tween moments compete. Like in spin glasses, this may
cause magnetic glass-like behavior at sufficient low tem-
peratures [1–4]. The difficulties in understanding the spin
glass phase [5,6] makes the studies of ferrofluids as model
substances for glassy systems interesting [4]. Other non-
magnetic disordered systems with competing interaction
can also be simulated with them.

An advantageous circumstance is the possibility of
many structure manipulations in ferrofluids1. This does
not modify the type of interactions, a feature not met in
spin glasses. Preventing particle aggregation, for example
by dilution, one might estimate the moment and magn-
etic anisotropy of individual particles experimentally.
X-ray scattering experiments give reliable information
about particle-size distribution and particle formation
within aggregates [8,9]. This gives a basis for the calcula-
tion of the macroscopic magnetic behavior.

To model spin glasses, it might seem disadvantageous
that moments can experience individual blocking which
leads to a different glass phenomenology. Further, the size
of moments has a wide distribution in contrast to spin
glasses. On the other hand, the study of ferrofluids allows
to model systems which have precisely these ingredients.

a e-mail: dietmar.eberbeck@uni-magdeburg.medizin.de
1 It can be partly realized easily. Structure changes like

for example particle chaining in strong external fields can be
achieved in situ [7,8].

The comparison of magnetic structure and macroscopic
properties of ferrofluids and spin glasses [4] provides a
better understanding of the magnetic behavior of frozen
ferrofluids.

Magnetization measurements [4] show that the super-
paramagnetic phase of ferrofluids crosses over gradually
to a state with weak irreversibility. This phase seems gov-
erned by slow magnetic clusters. The existence of a phase
with strong irreversibility at lower temperatures is sug-
gested from the onset of hysteresis. The phenomenology
of this second phase resembles more a spin glass phase
than the former. Critical slowing down and aging mea-
sured on ferrofluids [2,3] support the existence of a true
spin glass phase.

The development of the moment dynamics while the
system crosses over from the superparamagnetic into the
low temperature phase is investigated in the present pa-
per. To interpret the results, information about the par-
ticle structure is used. The clear influence of aggregate
structure on magnetic behavior is established by magne-
tization measurement [4]. The effect on the susceptibility
at shorter time scales is investigated as well.

2 Method

A clear sign for the glassy state is a wide distribution
g(τ) of relaxation times τ . The dependence of the dynamic
susceptibility on frequency is the expressed by generalized
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Debye formulas [6]

χ′(ω) = χS +

∫ τmax

τmin

χT(τ) − χS(τ)

1 + (ωτ)2
g(τ)dlnτ,

χ′′(ω) =

∫ τmax

τmin

ωτ (χT(τ) − χS(τ))

1 + (ωτ)2
g(τ)dlnτ. (1)

χT and χS are the static and adiabatic susceptibility, and
ω = 2πf , where f is the frequency. For frequency values,
ω = 2π/τ , in the middle of a broad and flat distribution,
g(τ), on finds approximately [10]

χ′′(ω) ≈ −
π

2

dχ′

dlnω
, (2)

≈ −
π

2
(χT(τ) − χS(τ))g(τ). (3)

The right hand side (3) is a measure of the spectral weight
of the relaxation time τ . The relation (2) is experimentally
verified for spin glass systems near and above the transi-
tion temperature, Tf [11,12].

The measurements of susceptibility were performed on
a conventional alternating field susceptometer ACS7221
from Lake Shore. Estimates of the complex susceptibility,
χ = χ′ + iχ′′, are based on an analysis of the induction
voltage, U ∝ µ0H0 χ iω exp {−iωt}, of the measurement
transformer. The output voltage is separated into in-phase
and out-of-phase components with a lock-in amplifier.

3 Samples

3.1 Composition

The investigated ferrofluids are based on magnetite
(Fe3O4) particles coated with a with a surfactant layer
(oleic acid) and suspended in different solvents (Tab. 1).
The samples were filled in glass cuvettes with a nearly
cylindrical chamber. The ferrofluids were investigated in
their frozen state only, i.e. after solidification of the
solvents2.

3.2 Particle and aggregate structure

The parameters of logarithmic normal size distribution
(21) of the radii, R (diameters d), of the core parti-
cles were determined using Small Angle X-ray Scattering
(SAXS) experiments, assuming spherical particle shape [9]
(Tab. 1). It was also possible to gain some information
about the structure of particle aggregates which are built
up due to high concentration and become developed dur-
ing solidification of the solvent: The distances between
particles within the aggregates diminish towards the min-
imal values r = d+ 2δ (d-particle diameter), whereby the

2 There are no sharp freezing temperatures of the oleic
substances, kerosene and synthetic ester solvents (Tab. 1).

effective thickness of the tenside layer is δ ≈ 2 nm. Com-
pact particle clusters which are more or less isolated from
each other are present in the APG sample. The P17 ag-
gregates have a porous, net-like structure. This aggregate
structure is nearly homogeneous in median length scales,
i.e. the aggregates are very extended. It was suggested
that the width of the size distribution is a reason for the
different kinds of aggregates [9].

For calculations of magnetic properties from the struc-
ture, it is necessary to know the magnitude of magnetic
moments of particles, m = MSV , which depends on parti-
cle volume, V , and its saturation magnetization, MS. MS

was derived from high field magnetization measurements
(Tab. 1) and depends on the particle size (see also [13]).

Another indispensable parameter is the energy of mag-
netic anisotropy of the particle moments, Ea = KV . The
anisotropy constant K comprise the shape anisotropy,
Ks and the crystal anisotropy, Kc ≈ 15 kJm−3 [14] at
T ≤ TV ≈ 100 K 3 [15]. The shape of the Fe3O4 particles
is near spherical [16]. Deviations from perfectly spherical
shape [7] lead to a shape anisotropy constant, Ks ≈ Kc

[17]. Assuming that no correlation between crystal and
shape anisotropy exists, the effective anisotropy was esti-
mated to be K = 20 kJm−3 with ∆K = 9 kJm−3.

3.3 Calculation of the susceptibility and the strength
of competing interaction between dipoles

The susceptibility of an ensemble of non-interacting super-
paramagnetic dipole moments with ideal moment blocking
was calculated [4] to

χ(H,T, f) =
MS

H

∫ RB(H,T,f)

0

f(R)R3L(H,T,R)dR∫
R

f(R)R3dR
· (4)

L is the Langevin function and f is the logarithmic normal
distribution of core radii. In equation (4) the thermal ex-
ception values of non-blocked moments are totalled. The
contribution of the blocked moments, χbl = 2

3M
2
S/2K ≈ 3

(β = 1, T = 0, maximum value) [18], is small (Fig. 1). At
a given temperature the moments of particles with radii

greater than RB(H,T, f) =

[
3 kT
4πK

(
1− H

HK

)−2

ln(fτ0)

] 1
3

are blocked within observation time, f−1, because of the
Néel relaxation time

τ = τ0 exp

{
KV

kT

(
1−

H

HK

)}
(5)

being greater than f−1. HK = K
µ0MS

is the anisotropy field

and τ0 = 10−10 . . . 10−13 s [19,20]. Simplifying, an uniaxial
anisotropy, for which (5) is valid, was assumed.

Within the spin glass theory the freezing temperature,
Tf , correlates with the energy of competing interaction.

3 TV is the size-dependent Vervey-temperature.
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Table 1. Composition and structure as well as magnetic parameters of investigated ferrofluids.

sample solvent volume- lognormal saturation

concentration size distribution magnetization

of particles

β 〈d〉 ∆d 〈d3〉1/3 ∆d/〈d〉 MS

[%] [nm] [nm] [nm] [kAm−1]

P17 kerosene 12 5.1± 0.3 1.0± 0.15 5.3 ± 0.3 0.20 ± 0.02 320

APG276 synthetic ester 2.7 5.3± 0.3 2.8± 0.05 6.8 ± 0.2 0.53 ± 0.02 390

APG synthetic ester 8.7 5.3± 0.3 2.8± 0.05 6.8 ± 0.2 0.53 ± 0.02 390

FDK decan 12 6.7± 0.6 3.4± 0.15 8.5 ± 0.4 0.51 ± 0.02 400
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Fig. 1. Real part of the ac-susceptibility of the investigated
ferrofluids (filled symbols). The open symbols are the corre-
sponding values calculated for non-interacting superparamag-
netic particles.

It is expressed by the dispersion of interaction potentials
among the moments, ∆J [5]. For dipole systems with com-
pletely random moment orientation this energy dispersion
was derived [4] to

〈E2
dd〉

1/2 =

√
2
√

3

µ0

4π

√√√√ z∑
i=1

m2
im

2
j

r6
ij

(6)

(see appendix), i.e. 〈E2
dd〉

1/2 =̂∆J . Necessary information
about the number z of nearest neighbors and the distances
r between them were obtained from Small Angle X-ray
Scattering experiments [9]. The Ising-like character of the
moments is deduced from the ratio of interaction (6) to
anisotropy energy, Ea = K π

6 〈d〉
3 (Tab. 2). It is developed

Table 2. Calculated values of anisotropy energy and root
mean square of the variance of dipole interaction between par-
ticle moments (6). The numbers of nearest neighbors, z, were
roughly estimated from the assumed cluster structure.

ferrofluid 〈d3〉1/3 〈E2
dd〉

1/2 Ea
〈E2

dd〉
1/2

Ea

[nm] [K] [K]

P17 5.3 12± 2 a 113 0.11

APG 6.8 74± 10 b 237 0.31

APG276 6.8 45± 7 c 237 0.19

FDK 8.5 174± 20 d 460 0.38
a net-like aggregate structure, z = 6± 2
b compact cluster structure, z = 8± 2
c In APG276 no aggregation was observed

during freezing, z = 3± 1
d compact cluster structure, z = 8± 2

mostly for the P17 with the smallest mean particle size
(〈E2

dd〉
1/2/Ea ≈

1
10 ). Interaction forces divert the moments

only slightly from their easy axis direction. Due to the fast
Néel relaxation (5) the moments can choose the one or the
other orientation along the easy direction.

Now, it can be concluded that some spin glass-like or-
dering of ferrofluid moments occurs at the temperature,
T0 ≈ 〈E2

dd〉
1/2, because an equivalent relation, Tf = ∆J ,

was established theoretically for Ising spin glasses and
experimentally confirmed [5]. A lower ordering tempera-
ture is expected for Heisenberg spin glasses as for example
given in [21]: Tf ≈ 0.3∆J .

4 Results and discussion

4.1 Temperature and field dependence

The ac-susceptibility exhibits a broad maximum at Tm

(Fig. 1) like the low field quasistatic magnetization [4].
The shape of the χ′ maximum, being similar to that of χ′′,
is broader the wider the size distribution of small particles
(Fig. 2). However, the obvious shape differences between
APG and FDK, both having nearly the same dispersion
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Table 3. Values of activation energy, Eact, and temperature of susceptibility maximum Tm gained from experiments and from
calculations for non-interacting moments. The calculated dipole interaction energy is taken from Table 2. The temperatures T0

and Td indicate the onset of moment ordering and strong extension of its relaxation times.

ferrofluid β Eact Emod
act Tm(0.1 Hz) Tmod

m (0.1 Hz) 〈E2
dd〉

1/2 T0 Td

[K] [K] [K] [K] [K] [K] [K]

P17 0.12 677 224 23± 1 8± 4 12± 2 15± 5 20± 5

APG 0.087 9210 1547 155± 4 56± 25 74± 10 100± 29 100± 30

APG276 0.027 3386 1547 94± 3 56± 25 45± 7 38± 28 40± 10

FDK 0.12 12118 2700 212± 10 98± 44 174± 20 114± 54 170± 30
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Fig. 2. Imaginary part of the ac-susceptibility at the frequen-
cies f = 10, 110, 400 Hz. The temperature is rescaled with re-
spect to the maximum temperature of χ′(110 Hz).

of the particle size, show that other parameters, such as
the structure of particle clusters, have a remarkable in-
fluence. Note that the shape of calculated χ(T )-curves of
APG and FDK are very similar (Fig. 1).

A calculation of the real part of susceptibility (4) for
given samples was possible because the particle size distri-
bution, saturation magnetization (Tab. 1) and magnetic
anisotropy constant of particles (Sect. 3.2) were known.
Here, the dipole interaction between particle moments

were not taken into account. From comparison with calcu-
lated data (Fig. 1), it is concluded that the dipole-dipole
interaction is indispensable to explain the values of the
temperatures of the susceptibility maxima, Tm, which are
higher than the corresponding Tmod

m (Tab. 3).

The susceptibility maximum in canonical spin glasses
at Tm is sharp. It is assumed that a phase transition occurs
at Tf ≈ Tm in the limit H → 0, indicated by the divergence
of the non-linear susceptibility [6,22]. For the purpose of
explaining the very broad maximum for frozen ferrofluids,
the following working hypothesis will be given:
Moments belonging to various particle clusters undergo
a quasistatic freezing transition at individual different
temperatures. The correlation radius of the particle mo-
ments around Tm remains finite, i.e. roughly limited to the
boundaries of particle clusters.

From the field dependence of ac-susceptibility it is
confirmed that the origin of susceptibility maximum of
ferrofluids is distinguished from that of canonical spin
glasses. The susceptibility of spin glasses at Tm diminishes
remarkably when a small dc-field is superimposed [23]. For
ferrofluids a decrease χ sets in for fields H > 800 Am−1,
only (Fig. 3). The non-sensitivity of ac-susceptibility to
small fields is plausible because no sign of its divergence
at Tm exists. Here connections to the Tm(H)-dependence
may exist. At low fields (80 < H < 2000 . . .3000 Am−1)
the temperature of susceptibility maximum, Tm ≈ 145 K,
is nearly independent of the field4 [4].

4.2 Frequency dependence

The non-zero values of χ′′ indicate the non-equilibrium
magnetic behavior in a wide temperature range (Fig. 2).
In this range there is also an irreversibility of low field
static magnetization [4].

Considering the frequency dependence of Tm, the mag-
netic state around the susceptibility maximum at Tm will
be enlightened. T−1

m (f) shows a linear dependence on lg f
(Figs. 4, 5). This is typical of systems consisting of inde-
pendent relaxing entities. Hence, the relaxation time may

4 By calculation (4) it was shown that this behavior is also
typical of an ensemble of non-interacting moments, if their in-
dividual relaxation times (5) exhibit some distribution.
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Fig. 3. Temperature dependence of the complex ac-
susceptibility of APG. The superimposed dc-fields and cooling
conditions are different.

be described by the Arrhenius law,

τ = τ0 exp

{
Eact

kT

}
, (7)

with the microscopic relaxation time, τ0 = 10−10 . . .
10−13 s, [5] and the height of the energy barrier, Eact, be-
ing independent of temperature. Equation (7) corresponds
to (5) for small fields with the anisotropy energy of the
magnetite particles Eact = KV .

For spin glass like systems, a wide distribution of re-
laxation times, g(τ), is characteristical. The average re-
laxation time is defined by τ̄ = f−1

max with fmax being the
frequency at which χ′′(f) is at its maximum. At the tem-
perature Tm(f) where χ′f(T ) is at its maximum for a given
measurement frequency, f , it will be defined

τm = f−1. (8)

With (8) the equation (7) becomes

T−1
m (f) = −

(
Eact

k

)−1

ln(τ0f). (9)
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Fig. 4. Frequency dependence of the inverse temperature of
the susceptibility maximum for P17 ferrofluid samples having
different magnetite concentrations.
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Fig. 5. Frequency dependence of the inverse temperature of
the susceptibility maximum for FDK and APG ferrofluids. Tm

of FDK is estimated from dχ
dT because Tm,χ is greater than

the melting temperature of decan (240 K) at high frequencies.
Here, the relation, Tm,χ − Tm, dχ

dT
≈ 70 K, found for low fre-

quencies, was used.

Eact is some weighted mean with

τm > τ̄ (10)

because the maximum of χ′′f (T ) appears at a lower tem-
perature than that of χ′f(T ) (Fig. 2) and because the re-
laxation time is usually smaller at higher temperature.
Consequently, the values, Emod

act , calculated according (9)
for non-interacting superparamagnetic particles (Tab. 3)
are greater than the mean anisotropy energy of particles,
Ea (Tab. 2).
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The third characteristic relaxation time of g(τ) is the
maximum value, τmax. If τmax(T ) reaches the measure-
ment time, f−1, then χ′f(T ) begins to divert from the ther-
modynamic equilibrium value, χT, and absorption sets in
(χ′′ > 0).

The values, τmax(T ), can be fitted to a Vogel-Fulcher
law,

τ = τ0 exp

{
Eact

k(T − T0)

}
, (11)

for spin glasses [6,24] and also for ferrofluids [3] with rea-
sonable parameters for Eact and τ0. The divergence of
τmax(T ) indicates a critical slowing down at T0 which hints
at a static phase transition into the glass phase. For spin
glasses the development of τm(T ) is qualitatively similar
to that of τmax(T ) [6], i.e. T−1

m (f) has a non-zero static
(f → 0) limit [23].

τmax is not measurable for all ferrofluids because χ′′ >
0 at all temperatures below the freezing points, except
for P17. Therefore τm(T ) will be investigated. The differ-
ence T (τmax = f−1) − T (τm = f−1) is larger for ferroflu-
ids (P17: T (τmax) ≈ 76 K;T (τm) ≈ 26 K) than for spin
glasses. Following the working hypothesis, this is likely
to be connected with the wide distribution of quasistatic
freezing temperatures of moments within the various clus-
ters. In order to investigate the behavior of magnetic par-
ticle moments at Tm, τm should be considered. In addition,
this reflects the contribution of the representative clusters
on the slowing down of the dynamic because at Tm a rel-
atively strong deviation of the susceptibility from χT sets
in. This is confirmed by the difference between the field
cooled and the zero field cooled magnetization [4].

Indeed, the activation energy Eact, calculated by the
fitting of τm(T ) to the Arrhenius law (9) (Figs. 4, 5), is
much greater than Emod

act , derived from model (4) by an
analogous treatment of Tmod

m (f) (Tab. 3). Because the dy-
namic behavior of the particle moments is the matter of
interest, i.e. the existence of some mean ordering tempera-
ture, T0, τm(T ) must be fitted to (11) 5. The activation en-
ergy should be represented by Emod

act ensuring that T0 → 0
in the limit of vanishing interaction. With (8) and with
Emod

act = −kTmod
m ln(τ0f) the formula,

T0 = Tm(f)− Tmod
m (f), (12)

results from (11). τ0 = 10−11 s was applied in good agree-
ment with the measured values for fine particles [3,18].
If T0 > 0 exists, the linear dependence of T−1

m on lg f
(Figs. 4, 5) may be an artifact of the small measured fre-
quency range.

The ordering temperature in (11), T0, is a measure of
the interaction energy between the moments. The values
of T0 are in rough agreement with 〈E2

dd〉
1/2 (Tab. 3). The

confirmation of the prediction, T0 ≈ 〈E2
dd〉

1/2 (Sect. 3.3)

5 Shtrikman and Wohlfarth have shown the validity of (11) to
get an ordering temperature for particle moments like these in
the case of weak interaction, i.e. T0 � Eact [25]. This condition

is nearly fulfilled, shown by the ratio
〈E2

dd〉
1/2

Ea
(Tab. 2).

supports the hypothesis that the moments cross over into
a spin glass-like phase. Because 〈E2

dd〉
1/2 was calculated

for closely packed particles with random moments (see
appendix), one may conclude that this glass phase is re-
stricted to particle clusters, comprising nearly randomly
oriented moments. Because the moments of ferrofluids
are not perfectly Ising-like, deviations from the relation,

T0 = 〈E2
dd〉

1/2, may occur. FDK for which
〈E2

dd〉
1/2

K〈V 〉 ≈ 0.4

(Tab. 2) exhibits a comparatively weak Ising property.
This may be the reason for the most negative value of
the difference, T0 − 〈E2

dd〉
1/2.

Because the moment freezing around Tm is restricted
to particle clusters with a finite number of moments, a
divergence of the relaxation time, τmax(T ) or τm(T ), to
infinity can not be expected. This means that the smeared
phase transition near T0 is quasistatic (Sect. 4.1). It is
presumed that the distribution of relaxation time reaches
large values, determined by the size of the clusters.

While temperature increases, the relaxation becomes
faster as follows from absorption values, χ′′(f), being
greater at higher frequencies (Fig. 2). At temperatures
lower than some limit, Td (Tab. 3), χ′′ becomes nearly in-
dependent of f (Fig. 2). From equation (3) follows that all
relaxation processes have the same spectral weight within
the experimental time window, f−1

max . . . f
−1
min. This is ver-

ified by the dominant real part susceptibility, χ′(f) ∝
ln f 6. It is noteworthy that for P17 with smallest par-
ticle size distribution and the more extended aggregates
the absorption at low frequencies has a higher weight
(Fig. 2). This tendency is also found for chain-like ag-
gregates (Sect. 4.3.2).

The relation, Td ≈ T0, indicates that the extension of
the relaxation time distribution is related to a spin glass-
like moment ordering at T0 as suggested above. An anal-
ogous relation, Td ≈ Tf , for the spin glass (Eu0.2Sr0.8)S
was found [24].

The relative small split effect, connected with the sen-
sitivity of χ′′ to phase angle correction, makes precise de-
termination of Td difficult. The hump in χ′′(T ) for FDK
at about 40 K (Fig. 2) is likely to be connected with
some change in structure within magnetite, which occurs
at 48 K for bulk material [26]. Soeffge and Schmidtbauer
have measured a jump in magnetization for a magnetite
single crystal at this temperature [27]. This may be also a
reason for the imperfectly defined Td in the case of APG.

When at temperatures, T < T0, clusters of near ran-
domly oriented moments exist, the following questions re-
main open: Which magnetic structure exists in the tem-
perature range T > T0? Can it cause energy barriers being
of order of Tm? For this low irreversibility phase the fol-
lowing hypothetical cluster picture is proposed:
Ferromagnetic-like short range order dominates at higher
temperatures, concluded from positive Curie temperature,
Θ, being of the order of Tm. The anisotropic dipole-dipole

6 In contrast to χ′′, the dominating real part, χ′, is insensi-
tive to phase angle corrections being determined by measuring
equipment. It allows the value of imaginary part, χ′′, to be
controlled by means of equation (2) (Tab. 4).
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interaction leads to ferro- or antiferromagnetic-like cor-
relation between neighboring moments, depending on its
mutual orientation. However, the ferromagnetic coupling
between two moments causes a two times higher energy
gain (18) than the antiferromagnetic one. Consequently, at
first the ferromagnetic correlations by decreasing the tem-
perature were realized. The moments which are not suit-
ably arranged in favor of ferromagnetic couplings remain
agitated, i.e. they have small thermodynamic expectation
values. Magnetic clusters with a ferromagnetic-like or as-
peromagnetic order may arise. The interaction between as-
peromagnetically ordered moments may exceed 〈E2

dd〉
1/2,

explaining the high Tm values. When the frustrated mo-
ments7 begin to freeze at further reduced temperature,
they disturb the asperomagnetic order. Hence, the inter-
actions between all moments become strongly competitive
and the system enters into a glass-like phase.

The considerable magnitude of the cluster moments
may be the reason for the dc-field influence which is
stronger in the cluster phase (around Tm) than in
the glassy state at low temperatures (T ≤ 40 K)
(Fig. 3). This is also concluded from the Tm(H)-behavior:
1 − Tm/Tm0 ∝ H2/5 at Tm(H) ≥ 60 ± 15 K [4]. The in-
teraction between the resulting cluster moments is small
because of its low saturation magnetization.

How does the magnetic system behave at lower tem-
peratures? It is suggested that the clusters of frozen mo-
ments percolate at T < T0. That is why the interaction
among the moments belonging to the inter-cluster space
is reduced because of the higher particle distances. In-
deed, a cross over to strong irreversibility was found by
magnetization measurements at high fields [4]: Magnetic
hysteresis sets in at temperatures between 40 and 70 K for
APG. The measured Tm(H) function changes its course at
the temperature, T = 60± 15 K, which is lower than T0.

4.3 Influence of topology

4.3.1 Variation of concentration

Different degrees of particle concentrations were realized
by diluting the P17 ferrofluid with kerosene. Due to the en-
hanced particle distances the mean interaction energy di-
minishes and the temperature of susceptibility maximum
Tm decreases (Fig. 4). The concentration dependent max-
imum temperature, Tm(β), was fitted by a power law with
the result

Tm(β) = (29± 4)β(0.37±0.12) + (10± 2). (13)

The freezing temperature of spin glasses, Tf , obeys
Tf(β) ∝ β for β < 1at% and Tf(β) ∝ β2/3 for 1 ≤
β ≤ 10at%. The decrease in the power reflects the in-
fluence of the non-competing short range interaction [5].
The comparatively slow change of the maximum temper-
ature of the ferrofluids, ∝ β0.37, is likely to be connected

7 Ferro- and antiferromagnetic bonds are nearly equally
distributed.

Table 4. ac-susceptibility for investigated ferrofluids with var-
ious topological structures.

ferrofluid β T χ′ χ′′
χ′′

χ′
χ̃′′ a

χ̃′′

χ′

sample [%] [K]

f = 10 Hz

APG 8.7 150 2.20 0.15 0.070 0.184 0.08

FDK 12 180 5.00 0.47 0.094 0.40 0.08

P17 12 23 8.00 1.20 0.150 0.91 0.11

P17 (FCb) 12 23 21.0 5.00 0.238

f = 400 Hz

P17 12 23 5.20 1.2 0.230

P17 (FC) 12 23 12.5 3.5 0.280

f = 110 Hz

APG 8.7 150 1.9 0.15 0.079

APG (FC) 8.7 150 4.3 0.67 0.156
a χ̃′′ = − π

2·ln 10
dχ′

d lg f .
b The particle system was frozen in the field

HFC =16 kAm−1.

with the existence of small particle clusters within the
very diluted samples [9]. The threshold value of 10 K
in equation (13) should approach the maximum temper-
ature, Tmod

m = 8 ± 4 K (Tab. 3), calculated for non-
interacting particles. The difference may be caused by the
presence of particle clusters as well as the uncertainty of
the anisotropy constant, K, and of the exact functional
form of Tm(β).

4.3.2 Chain like particle aggregates

If the samples are being cooled in presence of a strong
magnetic field, HFC = 1600 kAm−1, to a temperature be-
low solidification point of carrier liquid, the particles build
chains remaining stable after removal of the freezing field
[7,8]. The ferromagnetic order between moments belong-
ing to the same chain increases. This is experimentally
verified by the Curie temperature, ΘFC = 43 K, which
is significantly greater than for isotropic particle order
(ΘZFC = 27 K). The particle-chain structure causes a
2 . . . 3-fold enhancement of susceptibility at temperatures
around the susceptibility maximum (Fig. 3, Tab. 4). De-
creasing the temperature, the correlation radius of mag-
netic moments increases due to the reduction of the ther-
mal disorder. Then interaction between chains, caused by
their high resulting magnetic moments, sets in. This inter-
action has a more competitive property than that between
the chained particles. This may explain why the difference
in the Tm-values, ∆Tm = Tm,FC − Tm,ZFC, remains small
(P17: Tm,FC(110 Hz) = 26.5 K, ∆Tm = 3.2%, APG: see
Fig. 3).

For chain-like structures the relative absorption,
χ′′/χ′, is 1.5 . . .2 times higher than in samples with
isotropic particle arrangement (Tab. 4). Particle chaining
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Fig. 6. Sketch of two interacting magnetic dipole moments.

in APG leads to a stronger enhancement of the relative
absorption (Tab. 4) because χ′′/χ′ is significantly smaller
for APG than for P17 in the case of isotropic structure.
This is probably connected with the smaller extension of
the aggregates of APG [9]. From these results (Tab. 4) it
also follows that the increase of absorption is more pro-
nounced at low frequencies.

5 Conclusion

The results of this report and [4] give a picture of how
the superparamagnetic moments of solidified ferrofluids
could enter into a spin glass-like state. Non-equilibrium
dynamic of moments is observed over a wide temperature
range. This is achieved to a considerable part by interac-
tion between moments and not only by superparamagnetic
blocking. The slowing down of the dynamics is caused
by the correlation of the moments and creates the maxi-
mum of susceptibility at Tm. The correlation sets in first
within existing particle clusters where the interaction is
stronger than in the inter-cluster phase. The various sizes
and structures of the aggregates cause some distribution
of ordering temperatures. This is probably responsible for
the broad shape of the susceptibility maximum.

From the agreement between the mean ordering
temperature, T0, and the calculated interaction energy,
〈E2

dd〉
1/2, it is concluded that glass like moment correlation

occurs at T0, namely within clusters. This may produce a
finite jump of relaxation times. Only when thermal energy
decreases below the interaction energy of the inter-cluster
phase, a percolation of spin glass-like order through the
entire sample is possible. This is supported by the onset
of strong irreversibility at temperatures lower than T0.

Homogenization of the structure and a more accurate
knowledge of local anisotropy seems to be necessary for a
successful quantitative study of phase transitions in dis-
ordered systems like these.

It was shown that particle aggregate structure has a
significant influence on susceptibility, especially at higher
temperatures, where the radius of magnetic correlations
is small. Extended and chain like aggregates support fer-
romagnetic like short range coupling and the absorp-
tion of alternating magnetic fields, in particular for low
frequencies.

Appendix: Calculation of the interaction
energy of magnetic dipoles

The dipole interaction potential of a dipole moment, mj ,

Edd = −µ0mj ·Hi(rij), (14)

in a magnetic field,

Hi(rij) =
1

4π

(
3

(mi · rij) rij
r5
ij

−
mi

r3
ij

)
, (15)

produced by another moment, mi, is expressed in spheri-
cal coordinates (Fig. 6) by

Edd(ϕ, ϑ) = −µ0mjHi(ϑ, rij) cosϕ (16)

with

Hi(ϑ, rij) =
1

4π

mi

r3
ij

√
3 cos2 ϑ+ 1. (17)

In a system with random moment correlations the mean
value of (16) is zero, but not the mean value of

E2
dd(ϕ, ϑ) =

(µ0

4π

)2 m2
im

2
j

r6
ij

(
3 cos2 ϑ+ 1

)
cos2 ϕ. (18)

〈E2
dd〉 is equivalent to the variance of exchange coupling

for spin glasses, (∆J)2 = 〈(J−〈J〉)2〉. The transition tem-
perature for Ising spin glasses is roughly Tf = ∆J [28].
In system with randomly frozen moments, mj , the aver-
age in (18) must be performed over ϑ and ϕ. If the short
range order is homogeneous, i.e. all sites j, surrounding
particle i, are occupied with the same probability, then
〈3 cos2 ϑ+ 1〉 = 2. Simultaneously, each moment can bear
a random direction leading to 〈cos2 ϕ〉 = 1/3.

If the local field, H, is created by z neighbors (H =√∑z
i H

2
i if Hi are oriented at random), equation (18)

becomes

〈E2
dd〉

1/2 =

√
2
√

3

µ0

4π

√√√√ z∑
i=1

m2
im

2
j

r6
ij

· (19)

This is the mean interaction potential of randomly frozen,
non-movable moments.

Luttinger and Tisza have reported the possibility of
a ferromagnetic order in dipole systems with a periodic
cubic structure, such as a fcc or bc lattice [29]. But, the
local random anisotropy prevents an order like this at any
reasonable concentration [30].

Although the dipole-dipole interaction is long rang-
ing (∝ r−3), the effective interaction in random moments
systems is restricted to the nearest neighbors. The con-
tribution of the next nearest neighbors to the field (15)
is negligible compared with that of nearest neighbors be-
cause H is related to the variance of Hi. Note that Hi

enter in the sum of (19) proportional to r−6.
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With regard to the distribution of the magnitude of
the moments, f(R,µ, σ), the interaction energy (19) may
be calculated to

〈E2
dd〉

1/2 =

√
2
√

3

µ0

4π

√
z

×

√∫
Ri

∫
Rj

f(Ri, µ, σ)f(Rj , µ, σ)
m2
im

2
j

r6
ij

dRidRj , (20)

µ and σ are the parameters of the lognormal size distri-
bution,

f(R,µ, σ) =
1

√
2πσR

exp

{
−

(ln(R)− µ)2

2σ2

}
, (21)

of particle radii, R.
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